A Deterministic Filter for non-Gaussian State Estimation
نویسندگان
چکیده
منابع مشابه
Gaussian Filter based on Deterministic Sampling for High Quality Nonlinear Estimation
In this paper, a Gaussian filter for nonlinear Bayesian estimation is introduced that is based on a deterministic sample selection scheme. For an effective sample selection, a parametric density function representation of the sample points is employed, which allows approximating the cumulative distribution function of the prior Gaussian density. The computationally demanding parts of the optimi...
متن کاملNonlinear and Non-gaussian State Estimation: a Quasi-optimal Estimator
The rejection sampling filter and smoother, proposed by Tanizaki (1996, 1999), Tanizaki and Mariano (1998) and Hürzeler and Künsch (1998), take a lot of time computationally. The Markov chain Monte Carlo smoother, developed by Carlin, Polson and Stoffer (1992), Carter and Kohn (1994, 1996) and Geweke and Tanizaki (1999a, 1999b), does not show a good performance depending on nonlinearity and non...
متن کاملReal-time Recursive State Estimation for Nonlinear Discrete Dynamic Systems with Gaussian or non-Gaussian Noise
Many systems in the real world are more accurately described by nonlinear models. Since the original work of Kalman (Kalman, 1960; Kalman & Busy, 1961), which introduces the Kalman filter for linear models, extensive research has been going on state estimation of nonlinear models; but there do not yet exist any optimum estimation approaches for all nonlinear models, except for certain classes o...
متن کاملState Estimation in the Presence of non-Gaussian Noise
The problem of nonlinear filtering with a non-Gaussian model of measurement errors is considered in this paper: Based on Bayes classification of the observations an approximate solution is introduced. The Bayesian estimator can be applied to any discrete time, lineal; or nonlinear system which is observed in additive non-Gaussian measurement noise. The problem of narrowband inte$erence suppress...
متن کاملAn Effective Attack-Resilient Kalman Filter-Based Approach for Dynamic State Estimation of Synchronous Machine
Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2011
ISSN: 1617-7061
DOI: 10.1002/pamm.201110341